Counting Eulerian Circuits is #P-Complete

نویسندگان

  • Graham R. Brightwell
  • Peter Winkler
چکیده

We show that the problem of counting the number of Eulerian circuits in an undirected graph is complete for the class #P. The method employed is mod-p reduction from counting Eulerian orientations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Note on Counting Eulerian Circuits

We show that the problem of counting the number of Eulerian circuits in an undirected graph is complete for the class #P.

متن کامل

Asymptotic enumeration of Eulerian circuits for graphs with strong mixing properties

Let G be a simple connected graph all of whose vertices have even degrees. An Eulerian circuit in G is a closed walk (see, for example, [2]) which uses every edge of G exactly once. Two Eulerian circuits are called equivalent if one is a cyclic permutation of the other. It is clear that the size of such an equivalence class equals the number of edges of graph G. Let EC(G) denote the number of e...

متن کامل

Counting and Sampling Problems on Eulerian Graphs

In this thesis we consider two sets of combinatorial structures defined on an Eulerian graph: the Eulerian orientations and Euler tours. We are interested in the computational problems of counting (computing the number of elements in the set) and sampling (generating a random element of the set). Specifically, we are interested in the question of when there exists an efficient algorithm for cou...

متن کامل

Asymptotic Enumeration of Eulerian Circuits in the Complete Graph

We determine the asymptotic behaviour of the number of eulerian circuits in a complete graph of odd order. One corollary of our result is the following. If a maximum random walk, constrained to use each edge at most once, is taken on Kn, then the probability that all the edges are eventually used is asymptotic to en. Some similar results are obtained about eulerian circuits and spanning trees i...

متن کامل

Exact counting of Euler Tours for Graphs of Bounded Treewidth

In this paper we give a simple polynomial-time algorithm to exactly count the number of Euler Tours (ETs) of any Eulerian graph of bounded treewidth. The problems of counting ETs are known to be ♯P complete for general graphs (Brightwell and Winkler, 2005 [4]). To date, no polynomial-time algorithm for counting Euler tours of any class of graphs is known except for the very special case of seri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005